coming soon

Movies
Presentations
Wallpapers
Screensavers
Links

Signs Of God, Design In Nature
A thorough examination of the feathers of a bird, the sonar system of a bat or the wing structure of a fly...

Earthquake in France
"Atlas of Creation" Earthquake in France!
The 16 February, 2007, edition of the magazine Science, well-known for its pro-evolution stance, carried a report headed “Faith and Science” that discussed the impact of Adnan Oktar’s Atlas of Creation, written under the pen-name Harun Yahya. The report contained the following statements:...
 




 
Home page > plants by design > Plants' Deception Methods

Plants' Deception Methods
Palnts by Design


We said that some plants use methods of deception. These plants do not have nectar with which to attract insects. These kinds of plants are fertilised by their making use of their similarities to insects. One species of orchid, the mirror orchid, possesses the shape and colour of a female bee in order to attract bees. This species of orchid is even able to give off a suitable chemical signal to attract male bees, and produces an effective pheromone (a special chemical).

The Cyprus bee orchid is another of the plants which imitate insects to ensure their fertilisation. The number of orchids employing this technique is quite large, and the methods used differ from one to the other. Some imitate a female bee with its head pointing upwards, others have the head pointing downwards. For example, the yellow bee orchid uses the second method. For this reason their modes of fertilisation differ. 1
bee orchid mimicry
In the left picture is the Cyprus bee orchid, on the right is a male bee trying to fertilize the orchid because it thinks it is a female bee. The male bee tries to fertilize the orchid for a time. During this time, the pollen in the orchid's reproductive organ sticks to the bee's head. The bee will later go and pass this pollen on to other orchids in the same way. There is a harmony whose every detail has been very carefully planned between the orchids and the insects, and this cannot be explained by evolution. This harmony shows us that bees and orchids were created by God, in the same way as all other forms of life in the world.
orchid

Another species of orchid which imitates female bees is the dragon orchid. The lip of the dragon orchid's flower mimics the wingless female wasp so competently that only male wasps show any interest in them. Some members of the orchid family manage to attract insects to them, even if they have no nectar to offer. They secure the landing of male wasps on an area in the lower part of the flower by imitating the female wasp and giving off an attractive scent. The wasp which lands on the flower attempts to mate, and as a result, the orchid's pollinea are fixed on his body. Thanks to this deception, it deposits the pollen stuck on its body on another flower on which it lands with the same aim. 2

orchid orchid orchid orchid bee orchid
A few examples of orchids which imitate bees, although there are many more of them. The interesting thing is that each of these flowers looks like a different type of bee. It would be ridiculous to claim that such perfect resemblances could have come about by chance. Orchids were created by God in possession of this feature.

A special feature of the male wasps is that they reach the orchids two weeks before the females. This is a most interesting situation, because there are no female wasps around, only orchids which look just like female wasps and which are waiting for fertilisation. And when the male wasps come to the orchids, they smell an odour similar to that given off by female wasps. This is emitted by the orchid. Under the influence of this smell, the male wasps land on the orchid leaves. This triggers the plant's spring-loaded 'elbow' joint causing the wasp to fall on its reproductive organ. While the wasp attempts to escape from the flower, two pollen-laden sacs stick to the back of its head or to its back. In this way, when the wasp goes to other orchids, the pollen stuck to its back serves to fertilise them. 3 As we have seen, there is a most harmonious relationship between the hammer orchid and the wasp. This symbiosis is most important for the reproduction of the plant. Because if successful pollination did not take place, in other words, if the pollen were not to be transported from the insect to another plant of the same species, then fertilisation would not take place.

A male wasp tries to mate with a flower which it has mistaken for a female wasp. This deception is completely natural because some orchids do not just imitate female wasps' colour, shape, and fur-covered lower regions, they also imitate the scent given off by female wasps.

There are many examples in nature of such accord as exists between the hammer orchid and the wild bees. Sometimes differences between flowers can be the reason for such a relationship. For example, it is very easy for some insects to enter some flowers, because that part of the flower where the pollen lies is open, and insects and bees can easily enter these regions and reach the pollen. Some plants have a nectar entrance of such a size as can be entered only by certain animals. For instance, in some situations bees push themselves through these gaps so as to reach the nectar in the flower. It is very difficult, even impossible, for other living things to do what the bee does so very easily.

Bees and other insects, on the other hand, are unable to fertilise flowers with long corolla (petals) tubes. Only long-tongued insects, such as butterflies and moths can fertilise these flowers. 4

As we have seen from all these examples, there is a totally flawless harmony between insects, whose bodily structure is entirely suited to that of the plants, and the plants themselves.
It is impossible for the reciprocity in such a "lock and key" relationship to have come about by chance, as the evolutionists claim. Which means that to expect this to come about by chance contradicts the logic of the theory of evolution as maintained by evolutionists. According to the evolutionists' claims about natural selection, a life form which is not adapted to its environment either has to develop new mechanisms within itself or must slowly disappear. In this situation, according to the mechanism of natural selection, these plants, not being fertilizable by insects by reason of their particular flower structure, would either have disappeared or have had to change the form of their flowers. And in the same way, insects which can fertilise only these flowers because of the structure of their mouths, would either have disappeared for lack of food or have changed the structure of the organs they use to gather food.

But when we look at plants with long corolla tubes, or other plants, we see that they have developed no adaptation, in other words, a change or other supplementary mechanism. Again, no adaptation of any sort is to be seen in living creatures such as butterflies and moths.

These flowers, benefiting from a symbiotic relationship with the pollinators which fertilise them, have carried on living for many years, right up to the present.

What has been explained so far is just a short summary of methods employed by some different species of plant to survive down the generations. You will find all these details in any biology book, but those same sources are unable to provide a satisfactory explanation of the reasons for plants employing this pollen dispersal process. Because in every process carried out, features such as thought, reasoning, decision-making, and calculation-that we cannot ascribe to plants-are in evidence: we all know that a plant does not have the consciousness to perform such activities. Imagine the scenario we should be faced with if we said that a plant carried out all these processes of its own volition:

flowersThe plant "calculates" that its aerodynamic structure is suited to pollen dispersal by wind, and every subsequent generation employs the same method. Others "understand" that they will not be able to make sufficient use of the wind and, for this reason, make use of insects to carry their pollen. They "know" that they have to attract insects to themselves in order to be able to multiply, and try various methods to bring this about. They particularly identify what insects like. After finding which nectar and scents are effective for which insects, they produce scents by a variety of chemical processes and give them off when they have established the exact time to do so. They identify the taste in the nectar that insects will find pleasant and the totality of the substances in it, and produce these themselves. If the scent and nectar are not enough to draw insects to them, they decide to try another method, and, to suit this situation, make "deceptive imitations". Furthermore, they "calculate" the volume of pollen which will reach another plant of the same species and also the distance it has to travel, and on the basis of this, begin to produce it in the most suitable quantities and at the most appropriate time. They "think" of the possibilities that might prevent the pollen from reaching its destination and "take precautions" against them.

Some flowers open at night and so are fertilized by nocturnal creatures. One of the creatures which fertilize flowers at night are bats, which feed on the nectar in plants. The white, greenish, and purple flowers fertilized by bats at night have such a strong smell that bats, which are blind and fly in the dark, can easily find them. These flowers also produce great quantities of nectar. We see there is a perfect harmony between the two. There is no doubt that the creator of this harmony is God, the Compassionate and Merciful. 5
bat pollination

The plant "calculates" that its aerodynamic structure is suited to pollen dispersal by wind, and every subsequent generation employs the same method. Others "understand" that they will not be able to make sufficient use of the wind and, for this reason, make use of insects to carry their pollen. They "know" that they have to attract insects to themselves in order to be able to multiply, and try various methods to bring this about. They particularly identify what insects like. After finding which nectar and scents are effective for which insects, they produce scents by a variety of chemical processes and give them off when they have established the exact time to do so. They identify the taste in the nectar that insects will find pleasant and the totality of the substances in it, and produce these themselves. If the scent and nectar are not enough to draw insects to them, they decide to try another method, and, to suit this situation, make "deceptive imitations". Furthermore, they "calculate" the volume of pollen which will reach another plant of the same species and also the distance it has to travel, and on the basis of this, begin to produce it in the most suitable quantities and at the most appropriate time. They "think" of the possibilities that might prevent the pollen from reaching its destination and "take precautions" against them.

mothh flower pollen The yucca has a rosette of spear-shaped leaves from the centre of which rises a mast bearing cream-coloured flowers. The special feature of the yucca is that its pollen is in a curved region. For this reason only this moth with a specially curved proboscis can gather the pollen from the plant's male reproductive organs. The moth moulds the pollen into a ball and takes this to another yucca flower. First it goes to the bottom of the flower and lays its own eggs. Then it climbs back up to the top of the stigma and rams the pollen ball into the top. The plant has not been fertilised. The yuccas could never set seed if there were no moths. 6

Of course, such a scenario could not ever be a reality: in fact, this scenario breaks all the rules of logic. None of the above-mentioned strategies could be devised by an ordinary plant, because a plant cannot reason, cannot calculate time, cannot determine size and shape, cannot calculate the strength and direction of the wind, cannot determine for itself what kind of techniques it will need for fertilisation, cannot think that it will have to attract an insect it has never seen, and furthermore, cannot decide what methods it will need to be able to do any or all of these things.

No matter how much the details multiply, from what direction the subject is approached, and what logic is employed, the conclusion that there is something extraordinary in the relationship between plants and animals will not change.

nectar is hidden deep collibri pollen nectar colibri pollen nectar
In some flowers the nectar is hidden deep. This looks like a handicap to insects and birds gathering the nectar, in other words to the fertilization of the flower. Whereas it is not so for the flowers. Because God has made these plants' fertilization possible by creating creatures with features suitable for obtaining the deep-hidden pollen.

These living things were created in harmony with one another. This flawless system of mutual benefit shows us that the force which created both flowers and insects knows both kinds of living things very well, is aware of all their needs, and created them to be complementary to one another. Both living things are the work of the Lord of all the worlds, God, who knows them very well, who indeed knows everything. They are charged with presenting God's greatness, His supreme power, and His flawless art to men.
A plant has no knowledge of its own existence, nor of the miraculous functions it performs, because it is under the control of God, who planned its every feature, who created everything in the universe, and who continues to create at every moment.

References:
1. David Attenborough, The Private Life of Plants, Princeton University Press, Princeton, New Jersey, p.128
2. David Attenborough, The Private Life of Plants, Princeton University Press, Princeton, New Jersey, p.130
3. Malcolm Wilkins, Plantwatching, New York, Facts on File Publications, 1988, p.143
4. The Guinness Encyclopedia of the Living World, Guinness Publishing, 1992, p.42-43
5. Robert, R.Halpern, Green Planet Rescue, A.B.D, The Zoological Society of Cincinnati Inc., p.26
6. David Attenborough, Life on Earth, Collins British Broadcasting Corporation, 1985, p.84

 

 
(270 KB) Word doc (zip)
 
(312 KB) Adobe pdf (zip)
Your Comments About This Article

Our materials may be copied, printed and distributed, by referring to this site