Signs Of God, Design In Nature
A thorough examination of the feathers of a bird, the sonar system of a bat or the wing structure of a fly...

Dating back to around 2500 BC, the Ebla tablets provide very important information regarding the history of religions. The most important feature of the Ebla tablets,

Why is the theory of evolution not scientifically valid?

Home page > Animal Kingdom > The Dragonfly
The Inspiration for the Helicopter

The wings of the dragonfly cannot be folded back on its body. In addition, the way in which the muscles for flight are used in the motion of the wings differs from the rest of insects. Because of these properties, evolutionists claim that dragonflies are "primitive insects".

In contrast, the flight system of these so-called "primitive insects" is nothing less than a wonder of design. The world's leading helicopter manufacturer, Sikorsky, finished the design of one of their helicopters by taking the dragonfly as a model.6 IBM, which assisted Sikorsky in this project, started by putting a model of a dragonfly in a computer (IBM 3081). Two thousand special renderings were done on computer in the light of the manoeuvres of the dragonfly in air. Therefore, Sikorsky's model for transporting personnel and artillery was built upon examples derived from dragonflies.

Sikorsky helicopters were designed in imitation of the flawless design and manoeuvr ability of a dragonfly.

Gilles Martin, a nature photographer, has done a two year study examining dragonflies, and he also concluded that these creatures have an extremely complex flight mechanism.

The body of a dragonfly looks like a helical structure wrapped with metal. Two wings are cross-placed on a body that displays a colour gradation from ice blue to maroon. Because of this structure, the dragonfly is equipped with superb manoeuvrability. No matter at what speed or direction it is already moving, it can immediately stop and start flying in the opposite direction. Alternatively, it can remain suspended in air for the purpose of hunting. At that position, it can move quite swiftly towards its prey. It can accelerate up to a speed that is quite surprising for an insect: 25mph (40km/h), which would be identical to an athlete running 100 metres in the Olympics at 24.4mph (39km/h).

At this speed, it collides with its prey. The shock of the impact is quite strong. However, the armoury of the dragonfly is both very resistant and very flexible. The flexible structure of its body absorbs the impact of collision. However, the same cannot be said for its prey. The dragonfly's prey would pass out or even be killed by the impact.

Following the collision, the rear legs of dragonfly take on the role of its most lethal weapons. The legs stretch forward and capture the shocked prey, which is then swiftly dismembered and consumed by powerful jaws.

The eye of a dragonfly is considered the world's most complicated insect eye structure. Each eye contains about thirty thousand lenses. These eyes occupy about half the area of the head and provide the insect with a very wide visual field because of which it can almost keep an eye on its back. The wings of a dragonfly are of such a complex design that they make any conception of coincidence's involvement in their origin nonsense. The aerodynamic membrane of the wings and each.

The sight of the dragonfly is as impressive as is its ability to perform sudden manoeuvres at high speed. The eye of the dragonfly is accepted as the best example among all the insects. It has a pair of eyes, each of which features

approximately thirty thousand different lenses. Two semi-spherical eyes, each nearly half the size of the head, provide the insect a very wide visual field. Because of these eyes, the dragonfly can almost keep an eye on its back.

Therefore, the dragonfly is an assemblage of systems, each of which has a unique and perfect structure. Any malfunction in any one of these systems would derail the other systems as well. However, all of these systems are created without flaw and, hence, the creature lives on.


The Wings of the Dragonfly

The most significant feature of the dragonfly is its wings. However, it is not possible through a model of progressive evolution to explain the flight mechanism that enables the use of the wings. First, the theory of evolution is at a loss on the subject of the origin of wings because they could only function if they developed altogether at once, in order to operate correctly.

Let us assume, for a moment, that the genes of an insect on land underwent a mutation and some parts of the skin tissue on the body showed an uncertain change. It would be quite beyond reason to suggest that another mutation on top of this change could "coincidentally" add up to a wing. Furthermore, neither would the mutations to the body provide a whole wing to the insect nor would it do any good but decrease its mobility. The insect, then, needs to carry extra load, which does not serve any real purpose. This would put the insect at a disadvantage against rivals. Moreover, according to the fundamental principle of the theory of evolution, natural selection would have made this handicapped insect and its descendants extinct.

The figure above shows the wing movement of a dragonfly during flight. The front wings are marked with red dots. A close examination reveals that the front and back pairs of wings are flapped to a different rhythm, which gives the insect a superb flight technique. The motion of the wings is made possible by special muscles operating in harmony.

Mutations, moreover, occur very seldom. They always harm the creatures, leading to deadly sicknesses in most cases. This is why it is impossible for small mutations to cause some formations on the body of a dragonfly to evolve into a flight mechanism. After all this, let us ask ourselves: even if we assume, against all odds, that the scenario suggested by evolutionists might have been real, why is it that the "primitive dragonfly" fossils which would give substance to this scenario do not exist?

There is no difference between the oldest dragonfly fossils and the dragonflies of today. There is no remains of "a half-dragonfly" or a "dragonfly with newly emerging wings" that predates these oldest fossils.

Just as the rest of the life forms, the dragonfly, too, appeared all at once and has not changed to this day. In other words, it was created by God and never "evolved".

The skeletons of insects are formed by a tough, protective substance, called chitin. This substance was created with enough strength to form the exoskeleton. It is also flexible enough to be moved by the muscles used for flight. The wings can move back and forth or up and down. This motion of wings is facilitated by a complex joint structure. The dragonfly has two pairs of wings, one in a forward position with respect to the other. The wings operate asynchronously. That is, while the two frontal wings ascend, the back pair of wings descend. Two opposing muscle groups move the wings. The muscles are tied to levers inside the body. While one group of muscles pull up a pair of wings by contracting, the other muscle group opens the other pair by reflexing. Helicopters ascend and descend by a similar technique. This allows a dragonfly to hover, go backward, or quickly change direction.


Metamorphosis of the Dragonfly

Female dragonflies do not mate again after fertilisation. However, this does not create any problem for the males of the Calopteryx Virgo species. By using the hooks on its tail, the male captures the female by the neck. The female wraps her legs around the tail of the male. The male, by using special extensions on its tail, cleans any possible sperm left from another male. Then, he injects his sperm into the female's reproductive cavity. Since this process takes hours, they sometimes fly in this clenched position. The dragonfly leaves the mature eggs in the shallows of a lake or a pool. Once the nymph hatches from the egg, it lives in water for three to four years. During this time, it also feeds in water. For this reason, it was created with a body capable of swimming fast enough to catch a fish and jaws powerful enough to dismember a prey. As the nymph grows, the skin wrapping its body tightens. It sheds this skin at four different times. When it is time for the final change, it leaves the water and starts climbing a tall plant or a rock. It climbs until its legs give in. Then, it secures itself by help of clamps at the tips of its feet. One slip and a fall means death at that point.

This last phase differs from the previous four in that God moulds the nymph into a flying creature through a wonderful transformation.

The back of the nymph cracks first. The crack widens and becomes an open slot through which a new creature, totally different from the preceding, struggles to get out. This extremely fragile body is secured with ties that stretch from the previous creature. These ties are created to have ideal transparency and flexibility. Otherwise they would break and not be able to carry it, which could mean that the larva could fall into the water and perish.

In addition, there are a series of special mechanisms that help the dragonfly to shed its skin. The body of the dragonfly shrinks and becomes wrinkled in the old body. In order to "open" this body, a special pump system and a special body fluid are created to be used in this process. These wrinkled body parts of the insect are inflated by pumping body fluid after getting out through the slot. In the meantime, chemical solvents start to break the ties of the new legs with the old ones without damage. This process takes place perfectly even though it would be devastating if only one of the legs were stuck. The legs are left to dry and harden for about twenty minutes before any testing.

The wings are fully developed already but are in a folded position. The body fluid is pumped by firm contractions of the body into the wing tissues. The wings are left drying after stretching.

After it leaves the old body and dries out completely, the dragonfly tests all the legs and wings. The legs are folded and stretched one by one and wings are raised and lowered.

Finally, the insect attains the form designed for flight. It is very hard for anyone to believe that this perfectly flying creature is the same as the caterpillar-like creature that left the water. The dragonfly pumps the excess fluids out, to balance the system. The metamorphosis is complete and the insect is ready to fly.

Supposedly 250 million-year-old fossil dragonfly and a modern dragonfly.

One faces the impossibility of the claims of evolution again when one tries by reasoning to find the origin of this miraculous transformation. The theory of evolution claims that all creatures came about through random changes. However, the metamorphosis of the dragonfly is an extremely intricate process that leaves no room for even a small error in any phase. The slightest obstacle in any one of these phases would cause metamorphosis to be incomplete resulting in the injury or death of dragonfly. Metamorphosis is truly an "irreducibly complex" cycle and therefore is an explicit proof of design.

In short, the metamorphosis of dragonfly is one of the countless evidences of how flawlessly God creates living things. The wonderful art of God manifests itself even in an insect.

(308 KB) World doc file (zip)
(187 KB) Adobe pdf file (zip)
Your Comments About This Article

Our materials may be copied, printed and distributed, by referring to this site